Weyl sums in Fq[x] with digital restrictions

نویسندگان

  • Manfred G. Madritsch
  • Jörg M. Thuswaldner
چکیده

Let Fq be a finite field and consider the polynomial ring Fq [X]. Let Q ∈ Fq [X]. A function f : Fq [X] → G, where G is a group, is called strongly Q-additive, if f(AQ + B) = f(A) + f(B) holds for all polynomials A,B ∈ Fq [X] with degB < degQ. We estimate Weyl Sums in Fq [X] restricted by Q-additive functions. In particular, for a certain character E we study sums of the form X P E(h(P )), where h ∈ Fq((X))[Y ] is a polynomial with coefficients contained in the field of formal Laurent series over Fq and the range of P is restricted by conditions on fi(P ), where fi (1 ≤ i ≤ r) are Qi-additive functions. Adopting an idea of Gel fond such sums can be rewritten as sums of the form X degP<n E h(P ) + r X

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WEYL SUMS IN F q [ x ] WITH DIGITAL RESTRICTIONS MANFRED

Let Fq be a finite field and consider the polynomial ring Fq [X]. Let Q ∈ Fq [X]. A function f : Fq [X] → G, where G is a group, is called strongly Q-additive, if f(AQ + B) = f(A) + f(B) holds for all polynomials A, B ∈ Fq [X] with degB < degQ. We estimate Weyl Sums in Fq [X] restricted by Q-additive functions. In particular, for a certain character E we study sums of the form X

متن کامل

Twisted Weyl Group Multiple Dirichlet Series Over the Rational Function Field

TWISTED WEYL GROUP MULTIPLE DIRICHLET SERIES OVER THE RATIONAL FUNCTION FIELD SEPTEMBER 2013 HOLLEY A. FRIEDLANDER, B.A., UNIVERSITY OF VERMONT M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Paul E. Gunnells Let K be a global field. For each prime p of K, the p-part of a multiple Dirichlet series defined over K is a generating functio...

متن کامل

WARING’S PROBLEM WITH DIGITAL RESTRICTIONS IN Fq[X]

We present a generalization of a result due to Thuswaldner and Tichy to the ring of polynomials over a finite fields. In particular we want to show that every polynomial of sufficiently large degree can be represented as sum of k-th powers, where the bases evaluated on additive functions meet certain congruence restrictions.

متن کامل

On Exponential Sums, Nowton identities and Dickson Polynomials over Finite Fields

Abstract. Let Fq be a finite field, Fqs be an extension of Fq, let f(x) ∈ Fq[x] be a polynomial of degree n with gcd(n, q) = 1. We present a recursive formula for evaluating the exponential sum ∑ c∈Fqs χ(s)(f(x)). Let a and b be two elements in Fq with a 6= 0, u be a positive integer. We obtain an estimate for the exponential sum ∑ c∈F qs χ(s)(acu + bc−1), where χ(s) is the lifting of an additi...

متن کامل

Exponential Sums On

where f (j) is homogeneous of degree j. Theorem 1.4. Suppose (p, δ) = 1 and f (δ) = 0 defines a smooth hypersurface in P. Then L(A, f ; t) n+1 is a polynomial of degree (δ − 1), all of whose reciprocal roots have absolute value q. For exponential sums on A, several generalizations of Deligne’s result have been proved ([1, 2, 5, 7]). In all these theorems, the hypothesis implies that f , regarde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finite Fields and Their Applications

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2008